Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Viruses ; 14(5)2022 04 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1822446

RESUMEN

Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus Humano OC43 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Acetatos/farmacología , Animales , Ciclopropanos , Quinolinas , SARS-CoV-2 , Sulfuros
2.
EBioMedicine ; 77: 103891, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1709186

RESUMEN

BACKGROUND: Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-ß production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. METHODS: We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. FINDINGS: In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients' respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. INTERPRETATION: SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. FUNDING: FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.


Asunto(s)
Bronquiolitis , COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Acetatos/metabolismo , Acetatos/farmacología , Animales , Antivirales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Bronquiolitis/tratamiento farmacológico , Bronquiolitis/metabolismo , Ácidos Grasos Volátiles/metabolismo , Humanos , Lactante , Pulmón/metabolismo , Ratones , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/fisiología , SARS-CoV-2
3.
Molecules ; 26(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1572566

RESUMEN

This study demonstrates the inhibitory effect of 42 pyrimidonic pharmaceuticals (PPs) on the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) through molecular docking, molecular dynamics simulations, and free binding energies by means of molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) and molecular mechanics-generalized Born surface area (MM-GBSA). Of these tested PPs, 11 drugs approved by the US Food and Drug Administration showed an excellent binding affinity to the catalytic residues of 3CLpro of His41 and Cys145: uracil mustard, cytarabine, floxuridine, trifluridine, stavudine, lamivudine, zalcitabine, telbivudine, tipiracil, citicoline, and uridine triacetate. Their percentage of residues involved in binding at the active sites ranged from 56 to 100, and their binding affinities were in the range from -4.6 ± 0.14 to -7.0 ± 0.19 kcal/mol. The molecular dynamics as determined by a 200 ns simulation run of solvated docked complexes confirmed the stability of PP conformations that bound to the catalytic dyad and the active sites of 3CLpro. The free energy of binding also demonstrates the stability of the PP-3CLpro complexes. Citicoline and uridine triacetate showed free binding energies of -25.53 and -7.07 kcal/mol, respectively. Therefore, I recommend that they be repurposed for the fight against COVID-19, following proper experimental and clinical validation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Reposicionamiento de Medicamentos/métodos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Acetatos/química , Acetatos/farmacología , Antivirales/química , Antivirales/farmacología , Citidina Difosfato Colina/química , Citidina Difosfato Colina/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Uridina/análogos & derivados , Uridina/química , Uridina/farmacología
4.
Mol Ther ; 30(2): 963-974, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1525991

RESUMEN

Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).


Asunto(s)
Acetatos/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Ciclopropanos/farmacología , Quinolinas/farmacología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Sulfuros/farmacología , Células A549 , Acetatos/química , Enzima Convertidora de Angiotensina 2/química , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Ciclopropanos/química , Reposicionamiento de Medicamentos , Células HEK293 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Neutralización , Conformación Proteica , Quinolinas/química , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Sulfuros/química , Células Vero , Internalización del Virus/efectos de los fármacos
5.
Cell Chem Biol ; 29(2): 239-248.e4, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1347527

RESUMEN

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.


Asunto(s)
Acetatos/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Glicoproteínas de Membrana/genética , Microglía/efectos de los fármacos , Fenoles/farmacología , Receptores Inmunológicos/genética , Receptores X Retinoide/genética , Hormonas Tiroideas/farmacología , Acetatos/síntesis química , Animales , Sitios de Unión , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/patología , Modelos Moleculares , Fenoles/síntesis química , Fenoxiacetatos/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/inmunología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Elementos de Respuesta , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo , Transducción de Señal
6.
Pharmacology ; 106(9-10): 469-476, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1344012

RESUMEN

BACKGROUND: The coronavirus disease-19 (COVID-19) pandemic is a serious devastating disease and has posed a global health emergency. So far, there is not any specific therapy approved till date to control the clinical symptoms of the disease. Remdesivir has been approved by the FDA as an emergency clinical therapy. But it may not be effective alone to control the disease as it can only control the viral replication in the host. SUMMARY: This article summarizes the possible therapeutic potential and benefits of using montelukast, a cysteinyl leukotriene 1 (CysLT1) receptor antagonist, to control COVID-19 pathophysiology. Montelukast has shown anti-inflammatory effects, reduced cytokine production, improvement in post-infection cough production and other lung complications. Key Messages: Recent reports clearly indicate a distinct role of CysLT-regulated cytokines and immunological signaling in COVID-19. Thus, montelukast may have a clinical potential to control lung pathology during COVID-19.


Asunto(s)
Acetatos/farmacología , Tratamiento Farmacológico de COVID-19 , Ciclopropanos/farmacología , Antagonistas de Leucotrieno/farmacología , Quinolinas/farmacología , Sulfuros/farmacología , Acetatos/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/fisiopatología , Ciclopropanos/uso terapéutico , Humanos , Antagonistas de Leucotrieno/uso terapéutico , Quinolinas/uso terapéutico , Receptores de Leucotrienos/metabolismo , Sulfuros/uso terapéutico
7.
Antiviral Res ; 185: 104996, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-964516

RESUMEN

Middle East Respiratory Syndrome (MERS) is a respiratory disease caused by a coronavirus (MERS-CoV). Since its emergence in 2012, nosocomial amplifications have led to its high epidemic potential and mortality rate of 34.5%. To date, there is an unmet need for vaccines and specific therapeutics for this disease. Available treatments are either supportive medications in use for other diseases or those lacking specificity requiring higher doses. The viral infection mode is initiated by the attachment of the viral spike glycoprotein to the human Dipeptidyl Peptidase IV (DPP4). Our attempts to screen antivirals against MERS led us to identify montelukast sodium hydrate (MSH), an FDA-approved anti-asthma drug, as an agent attenuating MERS-CoV infection. We showed that MSH directly binds to MERS-CoV-Receptor-Binding Domain (RBD) and inhibits its molecular interaction with DPP4 in a dose-dependent manner. Our cell-based inhibition assays using MERS pseudovirions demonstrated that viral infection was significantly inhibited by MSH and was further validated using infectious MERS-CoV culture. Thus, we propose MSH as a potential candidate for therapeutic developments against MERS-CoV infections.


Asunto(s)
Acetatos/farmacología , Antivirales/farmacología , Ciclopropanos/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Quinolinas/farmacología , Sulfuros/farmacología , Animales , Antiasmáticos/farmacología , Proteínas Portadoras/efectos de los fármacos , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Inductores del Citocromo P-450 CYP1A2/farmacología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Reposicionamiento de Medicamentos , Células HEK293 , Humanos , Antagonistas de Leucotrieno/farmacología , Receptores Virales/genética , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA